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Considerable scientific and practical interest attaches to the changes in infiltration 
properties of a medium produced by a confined explosion. One of the first attempts to de- 
termine the permeability coefficient in the region of such an explosion is to be found in 
[i]. Here we give results from processing experimental data obtained on a porous saturated 
medium after a confined explosion. The methods of examining the infiltration properties 
have been described in detail [2, 3]. The pressure difference and the fliud flow rate be- 
tween different points in the medium were determined in the stationary state. These data 
are used as initial ones in solving the two-dimensional inverse problem for the permeability 
coefficient. The method of solving the problem is applied in processing experimental re- 
suits obtained on a porous saturated medium after a confined explosion. 

Experimental Data. A method analogous to that of [2, 3] was used in examining the in- 
filtration properties of the medium after a confined explosion. The experimental explosions 
were performed in an artificially cemented medium having properties similar to those of real 
collectors and constituting a mixture of dressed sand, lime flour, and waterglass. The 
medium was placed in a cylindrical metal vessel of diameter 300 mm and height 350 mm. We 
used TEN charges of mass 0.4, 0.76, and 1.34 g. Each charge was placed at the middle of the 
model and was detonated from the center. 

A comprehensive study was made of the mechanical effects in the high-poroslty medium (m = 
25%). The results provided an answer on whether there is any difference in infiltration 
parameters for monolithic and porous media when acted on by the explosion energy, and what 
is the difference in these properties if the explosion is performed in a medium in whlch 
the pores are filled with air at atmospheric pressure or with a liquid. 

Tubes of diameter 3 mm were placed at various distances from the charge between the 
cavity and the periphery in the models to examine the changes produced by the explosion, 
The ends of the tubes were perforated and the opposite ends were connected to a measurement 
system. The tubes were placed in the horizontal or vertical plane of the charge, The model 
enclosed in the metal cylinder was hermetically sealed by flanges at the ends, Figure 1 
shows the disposition of the tubes. 

We determine the steady-state flow rate Qi of air or kerosene and the corresponding 
pressure difference between apair of tubes before and after explosion, The infiltration 
characteristic for theliquid-saturated medium was the ratio I~== Qi/Apl, where Qi is the 
steady-state flow rate and Ap~ =p~+i--P~ is the pressure difference between a pair of tubes, 
while i:= I, 2 ..... N represents the tube number. In a gas-saturated medium, F is defined by 

2 r = pD.  

The parameter change due to the explosion was evaluated from F/to, where Fo is the 
characteristic before the explosion. Figures 2 and 3 give the results from the experiments, 

Inverse Permeability Determination from Experimental Data. The pressure difference 
Api between tubes is determined not only by the permeability of the medium between them but 
also by the properties of adjacent regions, as well as by the geometry of the model. It is 
therefore necessary to solve the inverse problem in order to determine the rational depen- 
dence of~bhe permeability coefficient from the results. 
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Consider the fluid filtration in a medium bounded by a sphere of radius R. We assume 
that the distribution of the permeability coefficient within the sphere is spherically sym- 
metrical, while the flow through the outer boundary is zero. We specify a source-antisource 
pair on some radius drawn from the center of the sphere and use the data characterizing Api 
and Qi for the flow between these points to determine the distribution k(r) of the permea- 
bility coefficient. The stationary process with this source-antisource system can be de- 
scribed in a spherical coordinate system with allowance for the axial symmetry as follows 
[4]: 

( ~ )  k(r, ~[s in  au) 1 a r2k(r) ~ r~ O = - - A ~ t O [ 6 ( r - - r 0 - - 5 ( r - - r i + t ) ] ;  ( i )  
r ~ Or sin 0 O0 ~ ~O 

Ou/Orl,=a = O; ( 2 )  

ul,=o < oo, (3) 

where r and 0 are the radial and angular coordinates on the plane of the meridlonal section, 
R is the coordinate for the outer boundary of the spherical specimen, k(r) is the permeabil- 
ity, which is a function only of the radius, ~ is the viscosity of the fluid, Q is the flow 
rate, the amount pumped through the system in unit time, and 6(r--ri) is the source 6 function. 

Here one should bear in mind that a real source or sink has a finite characteristic 
size p, but to simplify the mathematical calculations they are usually replaced by point 
ones that provide the necessary flow Q and pressure p at the boundary. 

System (1)-(3) describes the infiltration of a liquid or gas. In the case of a liquid, 
we have u = p and A = l, while for a gas u = p= and A = 2, where p is the pressure of the 
flUid, Pi is the pressure at a point in the source, and Pi+* is the pressure at a point in 
the antisource. Condition (2) means that the outer boundary of the spherical specimen is 
impermeable, while condition (3) means that the pressure is bounded at the center of the 
sphere. 

We assume that k(r) is unknown and attempt to recover if from information on Qi and 
Api, i§ ; the following method is used: We rewrite (i) as 

I a / ..a.~ , I 0 ( 0.\  1 I O/co. 
7 o-'7~ r''g-r] r r " s i n 0  o0 s i n 0 ~ ) =  - - ~ A I ~ Q I 6 ( r  - -  r ,)  - -  6 (r - -  r~+,)l /,'(r) OrOr" (4) 

In the steady state, 0u!~" is independent of time and is some function of the radius vector 
r, while on the left in (4) we have the Laplacian of the function u in the spherical coor- 
dinate system, where au/0~ = 0 , so equation (4) with boundary condition (2) represents a 
second boundary-value problem for a sphere: 

where 

The solution to (5) 

Au = / ( r ) ,  aa:'0rl~=R = 0, (5 )  

/ ( r ) =  A ! t Q [ 6 ( r - - r 0 - - 6 ( r - - r i i - 0 1 - -  k(,.) oro;" 
can be obtained by the Green's function method [4]: 

'I ( ' )  = - -  [ i~' l[ / (r,) ~ (r,, ,) ~, j  , 
.q 

(6) 
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where  ~ is the region of integration Irl~. / R and G(ri, r) is the Green's function. 

The Green's function for the second boundary-value problem takes the form [5] 

~- in , ( 7 )  G (r~, r) = ~  

~.~ I ' , - - ~  - I,' '---o - ~* + 1 ,  t,o - , ,  I I  ,, I ~o~  o j 

V e ( n )  " I . , -2R~coso,  cos0= l ' , l l ' l '  where t o=  ~71 + I t 1  (r t, r) 

We use (6) and (7) to get the final expression for u(r) at the arbitrary point rj at which 
the pressure is measured: 

a~q [ a (r~, ,j) a (~+~, rs) --  Io, (8) u (rA 
.......... k(r 0 -- ' k(rj+l) 

, < ' 
w h e r e  I 0 = ~-~ VuG (r,, rj) dr,. 

The vectors r i and ri+, take the form 

r I = {r h 0 = 0 } ;  r i + l  = { r i + l ,  O = 0 } ,  

so  s u b s e q u e n t l y  t h e  v e c t o r s  o r i e n t e d  a l o n g  t h e  symmetry  a x i s  i n  t h e  d i r e c t i o n  8 = 0 would  
n o t  be shown as  v e c t o r s .  The p o i n t s  o f  m e a s u r e m e n t  f o r  c o n v e n i e n c e  a l s o  l i e  on t h e  a x i s  
O - - O .  

Then t h e  p r e s s u r e  d i f f e r e n c e  b e t w e e n  p o i n t s  r j  and r j + x  can  be  p u t  a s  

A..o f , c  1 1 Aug,j+1 = 4a ( , -  (ri, r~) - -  G (,'i, r~+1)] ~ + [G ("t+1, "~+0 - -  G(ri+l, r j ) J ~ j  + Ij, (9) 

t CfC v,~ • where  I~ = ~-s J I J k ( r , )  Or [G(r,, rj) - -  G(rl ,r j+OJdr I. 

AS G(r~, rl)"~ G(ri+i, r/+1)~ !/(4~p), where p is the characteristic size of the source, and 
G(ri, r/~)~ G(ri+l, rfl ~, I/(4aA), where A is the distance between the source and antisource, and 
A >> p, we have from (9) the recurrence formula 

1 I p (lO) 

Then if the permeability is known before the explosion and if we assume that the char- 
acteristics are only slightly altered after the explosion in the peripheral region, we can 
begin with the most remote point and calculate k(ri) for all the points at which the sources 
lle. Claarly, one can calculate the permeability from (10) only by successive approxima- 
tion, since to calculate the integral I one needs to know the distribution of k(r) and the 
value of the derivative Ou(r)~r. defined by it. 

We used the following calculation algorithm. In the zeroth approximation, we put 
I~ ~ = 0, and from (i0) we calculated k~. 

The values for k~ at the discrete points were used to k(U)(r) as polynomials by least 
(0h squares. Then the k (r) relationship was substituted into (I) and the series of direct two- 

dimensional problems of(1)-(3) was solved for the various source-antisource pairs. The 
problem of (1)-(3) was handled numerically by the method of [6] using longitudinal-transverse 
fitting in the r and e coordinates. The numerical method of solving the problems has been 
described in [7]. 

The distributions u(r) obtained in this way were used to calculate 1~I) : The I~ I) found 
in the first approximation enabled one to calculate the k i in the next one. The successive 
approximations were performed in a similar fashion, the convergence criterion being 

where  r i s  a g i v e n  s m a l l  q u a n t i t y  and I i s  t h e  number  o f  t he  a p p r o x i m a t i o n .  
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Inverse-Problem Solution. We consider the method of solving the inverse problem with 
a known dimensionless model distribution for the permeability k,(0 = i + 12.5(05--~R)=; for 
this distribution, we solve the series of two-dimensional problems of (1)-(3) with various 
source-antisource pairs, which enable us to determine the corresponding pressure difference 
for a given value of Q. These differences were used as input data for recovering the k(r) 
profile. It was assumed that A~Q = I, R = I, and the sources were arranged with a step of 
A =0,1R , with the characteristic size p of a source determined by the dimensions of the 
computing cell. In the calculations we used a net with uniform steps in r and 0. The num- 
ber of nominal points in the r and e coordinates were equal and were 21 and 41 in different 
treatments. 

The characteristic source size decreases towards the center of the sphere, so the di- 
mensions of a computing cell are dependent on the distance to the center: 

~/~ (ii) Pi  ~ r i  �9 

The calibration was performed by calculating Au~.i+i for k = constant followed by cal- 
culation of Pi from (i0), and this gave the dependence of 0i on radius coincident with (ii). 
In using (i0), we either specify the exact value of k(r N) in the peripheral zone or assume 
that k(rv) = k(rN_1). The error introduced by equating the values of k(r) at the two extreme 
points results in a certain increase in the error in determining k(r), but the calculations 
showed that this error did not exceed 5% in this model treatment. Figure 4 shows the results 
from solving the inverse problem (curve 1 is the true distribution of the permeability co- 
efficient, 2 is the zeroth approximation ~~176 0) and 3 is the approximation to the 
relationship with polynomials provided by least squares). Even the zeroth approximation 
(curve 2) correctly reflects the qualitative behavior of ko(r), while quantitatively the 
difference from the true solution is not more than 7%. The next approximation gives essen- 
tially the exact solution. The convergence is rapid because the ]~z) are small by comparison 
wlth 4~AAuj,i+{ , since the integral I~ contains the logarithmic derivative of Ak/k, and so 
the integral ij may be comparable wi~h 4~A~uj,j+ i only when k(r) varies rapidly in the region 
of definition. 

Curve 2 is of sawtooth character, which is due to the discrete character of the speci- 
fication of Auj, j+i ; the amplitude of the oscillations decreases as the number of points in- 
creases. When the ~uj,j+ i are specified discretely, there is no information on the behavior 
of k(r) between the measurement points, and therefore physical meaning attaches only to the 
average value of the permeability between the measurement points. For this reason it is 
necessary to average k(Z)(ri). In this study, this operation was realized by approximating the 
k~)(Ocurves with the polynomials. 

This method of determining the permeability was used to process the experimental data 
obtained with confined explosions in the porous medium. In the calculations it was assumed 
that f* == (4--5)'I0-Icm, Ai,i+ i = 2 cm. 

In principle, it is necessary to process each experiment separately and then average 
the set of k(r) distributions. However, it was not possible to obtain a continuous sequence 
of measurements between adjacent tubes in all the experiments, although this is necessary 
in order to use (I0). Therefore, it is desirable to start by performing a statistical pro- 
cessing of the measurements Qi,i+i, Aui.i+~ and coordinates rj, ~+i, and then to use the average 
data to calculate k(r). Figure 5 shows the results from such processing for a water-satu- 
rated medium with background permeability k b = 0.4 D, and Fig. 6 shows the same for a gas- 
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saturated medium with ~b ,= 0.32 D. The initial porosities were the same in both cases (m = 
25%). The broken lines in Figs. 5 and 6 show the confidence limits for the k(r) curves 
arising in the main from the statistical spread in Qi and Api. 

These curves show that the k(r) for a water-saturated medium after explosion qualita- 
tively coincides with the corresponding F/Fo relationship (Fig. 3). As regards k(r) in a 
gas-saturated medium after explosion, it differs from the corresponding r/Fo relation (Fig. 
2) in being convex downwards. There is a tendency for the permeability in the region of the 
cavity to fall after the explosion in the saturated medium in the range i.5a'<r <10a, 
where a is the radius of the cavity. However, while the fall in the permeability is very 
substantial for the gas-saturated medium (at the minimum point, the permeability is reduced 
by an order of magnitude by comparison with k b before the explosion), k(r),/kb~1~2 for the 
water-saturated case, 

The main error in recovering the k(r) curve is determined by the spread in F. A second 
major factor that introduces error into determining k(r) is the inaccuracy in determining 
Pt = !rj--rll , which in our experiments characterizes the effective source size. We see from 
(10) that if all the sources are of the same effective size, the error in determining O af- 
fects only the normallzation of k(r), and has no influence on the r dependence. If the 
sources differ in effective size, error in determining the sizes may also affect the accu- 
racy in determining the radial k(r) dependence. Therefore, it is desirable to measure the 
pressure difference not between the tubes through which the fluid is pumped but between tubes 
placed near them. In that case, 9~ = l~--ril will be larger and the relative error in de- 
termining it is reduced. 

The geometry of the real model differs from the spherical one assumed in solving the 
inverse problem, but the height of the cylindrical model was approximately twice the radius 
of the base, while the flow speed near the corner points tends to zero, as calculations show. 
Therefore, the difference from spherical symmetry is slight, which enables one to handle two- 
dimensional direct problems instead of three-dimensional ones. The errors in determining 
the AP~,t+i and Qi were 3%. These dare,ere used with the error associated with the spread 
in r/ro to calculate the confidence limits for k(r). 

This study thus shows that a confined explosion in a porous (m = 25%) saturated medium 
reduces the permeability in the range |.5a<r< toe; the most substantial reduction occurs 
after explosion in a gas-saturated medium, with k(r) at the minimum reduced by an order of 
magnitude. 

The permeability reduction is not so substantial in a water-saturated medium: by less 
than a factor 2. Also, in that medium k(r) near the cavity exceeds k b and the distribution 
is not monotonic. 
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PROPAGATION OF NONLINEAR COMPRESSION PULSES IN GRANULAR MEDIA 

V. F. Nesterenko UDC 624.131 + 532.215 + 534.22 

The study of mechanics of a granular medium is of substantial interest, both scientif- 
ically and for the solution of applied problems. Such materials are, for example, good 
buffers for shock loads. Their, study is important for the development of processes of the 
pulse deformation of several porous materials. A review of studies of small deformations 
and elastic wave propagation in these media was carried out in [i] on the basis of discrete 
models. The structure of a stationary shock wave was analyzed in [2] as a function of its 
amplitude. 

i. Statement of the Problem. The problem of nonstationary, nonlinear perturbations 
in one-dimensional granular media is stated in the present paper on the basis of the well- 
known interaction between neighboring granules. 

As an interaction law we choose the Hertz law [3] 

3 ( i : r  

where F is the compression force of granules, E is the Young modulus of their material, R, 
and R2 are radii, ~ is the Poisson coefficient, and x, and x2 are the coordinates of spheri- 
cal granules (x2 > x,). 

It is necessary to point out that a dependence of the form ~s/~, where 6 is the closest 
approach of particle centers, is valid not only for spheres, but also for contacts of other 
finite bodies [3]. Interestingly, it is only due to the finite particle sizes of a linearly 
elastic material constituting the granular medium that its behavior has a nonlinearly elastic 
character. 

The use of the static Hertz law in solving dynamic problems implies the following re- 
strictions: I) the maximum stress achieved at the center of the contact must be less than 
the elastic limit; 2) the sizes of the contact surface are much smaller than the radii of 
curvature of each particle; and 3) the characteristic times of the problem r are much longer 
than the oscillation period of the basic shape for the elastic sphere T 

~ > > T ~ 2 . 5 R ~ z ,  

w h e r e  c t  i s  t h e  v e l o c i t y  o f  s o u n d  i n  t h e  s p h e r e  m a t e r i a l .  

C o n d i t i o n s  1 - 3  r e s t r i c t  t h e  m a s s  v e l o c i t i e s  o f  t h e  medium t o  q u a n t i t i e s  o f  t h e  o r d e r  
o f  s e v e r a l  m e t e r s  p e r  s e c o n d  f o r  m e t a l l i c p a r t i c l e s  w i t h  r a d i i  i n  t h e  i n t e r v a l  1 - 5  mm. 
D i s s i p a t i o n  p r o c e s s e s  a r e  n o t  t a k e n  i n t o  a c c o u n t  a t  t h e  p r e s e n t  s t a g e  o f  t h e  s t u d y .  

F o r  n u m e r i c a l  s t u d y  o f  p e r t u r b a t i o n  p r o p a g a t i o n  p r o c e s s e s  i n  a o n e - d i m e n s i o n a l  c h a i n  
o f  s p h e r i c a l  p a r t i c l e s  w i t h  a r b i t r a r y  r a d i i  R i t h e  s e c o n d  o r d e r  e q u a t i o n s  o f  m o t i o n  w e r e  r e -  
d u c e d  t o  a f i r s t  o r d e r  s y s t e m  o f  e q u a t i o n s :  

xi = F~(~ ,  x = (~ ,  x~ . . . .  , ~N),  i = 1 . . . . .  2N, ( 1 . 2 )  

F~(x) = ~ ( x )  - - ~ ( x ) ,  ~ = t ,  . . . ,  N ,  
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